Experimental Studies on Lateral Root Formation in Radish Seedling Roots: II. Analysis of the Dose-Response to Exogenous Auxin.

نویسندگان

  • L M Blakely
  • R M Blakely
  • P M Colowit
  • D S Elliott
چکیده

Application of indoleacetic acid (IAA) and other auxins causes cultured radish (Raphanus sativus L. ;Scarlet Globe') seedling root segments to produce an increased frequency (FR, no. cm(-1)) of lateral roots (LR); in the absence of auxin, segments spontaneously form about 6 LR cm(-1). A dose-response study has revealed that the increase in FR follows a biphasic Michaelis-Menten relationship with the medium concentration of the undissociated form of IAA ([IAAH](m)). The fitted curve for phase I has a maximum response level (R(max)) of 5.2 LR per centimeter above the spontaneous FR; the [IAAH](m) giving half-maximal response (C(1/2)) is 21 nanomolar. For phase II, the values for R(max) and C(1/2) are 56 LR per centimeter and 11 micromolar, respectively. The response is variable in the transition concentration region between the two phases; in that region (but not, or much less commonly, at higher or lower [IAAH](m)), LR initiation may resume or continue after the first day. At and above 100 micromolar [IAAH](m), the roots are hyperstimulated and generally fail to respond. The developmental stage of LR formed in medium with very low [IAAH](m) (10 nanomolar) is enhanced compared to LR formed in medium lacking auxin; the stage is diminished at higher auxin levels, in inverse correlation with FR. Trends in the responses to NAA and IBA were similar, but NAA required only 0.03 times the dose of IAA, while IBA required 6 times the dose of IAA. These findings may be of use in a search for possible auxin receptors involved with LR initiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth and Chemical Composition of Pistachio Seedling Rootstock in Response to Exogenous Polyamines under Salinity Stress

In order to evaluate responses of a pistachio seedling rootstock (Pistacia vera L. cv. Ghazvini) to NaCl induced salinity stress and potential protective role of exogenous spermine and spermidine on NaCl induced salinity stress, a greenhouse experiment was conducted during growing season of 2009. The NaCl treatments, involving 800, 1600, and 3200 mg NaCl per Kg of soil for 90 days, suppressed g...

متن کامل

AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling.

Arabidopsis root architecture is regulated by shoot-derived signals such as nitrate and auxin. We report that mutations in the putative auxin influx carrier AUX1 modify root architecture as a result of the disruption in hormone transport between indole-3-acetic acid (IAA) source and sink tissues. Gas chromatography-selected reaction monitoring-mass spectrometry measurements revealed that the au...

متن کامل

The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture.

Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, dev...

متن کامل

Root Regeneration in Pistachio Rootstock is Affected by Auxin and Polyamines

Pistacia vera cv Badami-e-riz and P.vera cv Ghazvini are the most important and popular rootstocks in Iran, which tolerate salinity and phytophthora fungi. This study was conducted to evaluate the effects of various concentrations of polyamines and IBA on root regeneration of transplanted bare- rooted ‘Badami-e-riz’ and ‘Ghazvini’ pistachio rootstocks. The mean comparison between IBA and polyam...

متن کامل

Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling.

Although the importance of auxin in root development is well known, the molecular mechanisms involved are still unknown. We characterized a rice (Oryza sativa) mutant defective in crown root formation, crown rootless1 (crl1). The crl1 mutant showed additional auxin-related abnormal phenotypic traits in the roots, such as decreased lateral root number, auxin insensitivity in lateral root formati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 87 2  شماره 

صفحات  -

تاریخ انتشار 1988